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Finite Element Analysis of Thermal Stresses in Functionally 
Gradient Layered Composites 
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(Received March 23, 1998) 

A new composite material has been introduced which has a great potential satisfying success- 

fully the desired functions under severe thermal circumstances. Because of the sharp material 
discontinuity at the interfaces between different material layers in classical layered composites, 
thermal and mechanical stress concentration may exist at such interfaces, and which results in 
undesired failure. The functionally gradient material (FGM), a new concept for future-oriented 
composite material, has a continuously varying material variation through the thickness of 

layered composites. And, hence, it can eliminate the defect occurred in classical layered 
composites. The purpose of  this study is to develop a technique for finite element analysis of the 

thermal characteristics of FGMs, and to investigate the effects of significant governing parame- 
ters, a variation function of material composition and a relative thickness of FGM layer inserted 
between metal and ceramic layers. Through numerous numerical simulations carried out with 

the developed FEM program, we investigated the thermal characteristics for different concerning 
parameters. Considerable improvement and parametric dependence on temperature and thermal 

stress distributions are obtained. 

Key Wards :  Functionally Gradient Material, Thermal Stress, Finite Element Analysis, 

Volume Fraction, Relative Thickness Ratio. 

1. Introduction 

Classical layered composite materials, thanks 
to a combination of  superior properties of differ- 

ent materials such as metals and ceramics, have 
been widely used for various engineering applica- 
tions. That is, to meet mutually different func- 
tions, they are made by composing of metals 
having high strength against fracture and thermal 
shock, and ceramic having low density, superior 
thermal strength and resistance against creep. 

However, in classical layered composite, there 
may exist sort of stress concentration at the inter- 
face where two different material layers meet, 
which can produce undesired results such as 

excessive thermal stresses, occurrence of  crack and 
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layer delamination. This defect is totally owing to 
the sharp discontinuity in material composition at 
such interfaces. 

To overcome such a defect in classical layered 
composites, studies on the development of new 
layered composites, functionally gradient mate- 
rials, have been intensively progressed since late 
1980's. As illustrated in Fig. 1, FGM has a 
material composition varying continuously(with- 
out any discontinuity) through the thickness. 

Among major merits of FGMs are ; (1) smooth 

variation in thermal stress distribution, (2) 
minimization of stress concentration occurred 
near interfaces or free edges and (3) control- 

lability of design parameters. 
The purpose of this study is to develop a 

numerical technique for finite element analysis 

and to carry out numerical simulations for its 
thermal stress characteristics. This paper is orga- 
nized as fbllows ; (1) theoretical study of FGMs, 

(2) finite element approximation, (3) numerical 
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results and (4) conclusion. 

2. Variat ion  of  M a t e r i a l  Composit ion 

Referring to Fig. 3 of FGMs of uniform thick- 

ness 2c, metal and ceramic compositions vary 

with their volume fraction changes through the 

thickness. If we denote volume fraction ratios of 

metal and ceramic, respectively, by f,n and fc, then 

f~+f~---1. So, it is enough for constructing a 

specific material composit ion to define a volume 

fi'action function for any one material. Here, let us 

choose it of  metal (i. e., f,~) such that ( N  is a real 

number) 

A ( y ) =  ~ , (-y,n<y<yc) (1) 

to, (y~ < y < c) 

Here, ym, y,- represent the vertical locations of 

bottom and top surface of  the middle F G M  layer. 

By a power index N is physically meant a parame- 

ter controlling the material composition varia- 

tions through the thickness. Various patterns of  

volume fractions can be obtained for different 

values of N, which is well shown in Fig. 2. 

Another important parameter is the relative 
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thickness ratio RT of the middle FGM layer to 

the entire thickness 2c, that is R T =  (y~--ym)/2C. 
According to the relative thickness ratio, we have 

the following major categories for FGM compos- 

ites. 

Next, we record the effective material properties 

of the middle FGM layer expressed by those of 

ceramic and metal and volume fraction functions, 

which are derived according to the modified 
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Fig. 1 A functionally gradient meaterial. Fig. 2 Variations of the metal volume fraction. 
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Fig. 3 Type of FGM layered composites. 
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Eshelby's equivalent inclusion method. More 
detailed derivation may referred to Wakashima 
and Tsukamoto(1991).  Let us denote the bulk 
modulus by K,  the shear modulus by /z, Young' 
s modulus by E,  Poisson's ratio by u, the thermal 
expansion coefficient by a, the thermal conductiv- 
ity by k and the specific heat by c. 

The effective bulk modulus / f  and shear 

modulus /7 are computed by the following rela- 
tions. 

1~__ afcKm 
-~mR;+afcKm (Kc-Km) +Kin (2) 

- bfcl2'm (IJc--lZm) +am (3) 

Here, subscripts c and m indicate ceramic and 
metal, respectively, and 

a Kc(3Km +4/~m) 
= K ~ ) - ~ .  2~74)z 'm i (4) 

= (m+ ea=) (5) 

where, e = (9Km+81~m)/(6K,~+ 12/zm). With K,  
/7, effective Young's modulus E,  Poisson's ratio 
~- and thermal expansion coefficient ~ are expres- 
sed as follows from basic parametric relations and 
the Levin's relation 

E = ~  (6) 3K+g 
_ 3 / ~ - 2 ~  
v = 2 ( 3 K + / 7 )  (7) 

K J f m ( K ~ - K )  ( a t - a m )  +am (8) 
= KKm (Kin - Kc) 

Finally, the effective thermal conductivity k- and 
specific heat ~" are 

-~ ~,ckm ( kc -  km) 
=kin + 7 , ~ ( k c - k ~ ) / 3  + km (9) 

C~-Cc+ (Cm-- cc) fm ( 1 0 )  

As for the effective density ~- which is directly 
proportional to the composition fraction, we 
immediately compute by the relation, / 5 ( y ) = p c  

+ (Pro--pc)fro. 

3. Ana lys i s  M o d e l  and H e a t i n g  

Condi t ion  

For our numerical study, we select Ni for metal 
layer and aluminum oxide(hereafter, A1203) for 

ceramic layer. The main reasons for selecting 
these materials are : (1) they are widely used, (2) 
their material properties are suitable for compos- 
ites and (3) their material data are well known. 
In Table 1, we contain material data of Ni and AI 

203. 
A geometry of symmetric FGM model (a tran- 

sversely isotropic material) for finite element 
analysis is shown in Fig. 4, where 2 L = 2 0 m m  and 
2c=10mm. Since we made the assumption of 
infinite dimension in the x-axis, we apply the 
symmetric boundary condition(i, e., 8T/Ox--O 
on the sides of x=_+L) .  In order to construct 
finite element mesh, we use isoparametric bilinear 
two dimensional quadrilateral elements. 

Referring to Fig. 4, we made the following 
assumptions and conditions for this study. 

(1) Neglecting creeps in Ni and A1203. 
(2) Perfect bonding. 
(3) Initially stress-free state. 
(4) Temperature independent material con- 

stants. 
And the model types of FGM consist of ; (1) 

classical bimaterial, (2) partial FGM and (3) full 
FGM, as shown in Fig. 3. 

Table 1 Thermal and mechanical properties. 

Material 
Properties ~ . ~ _ . _  

Ni 

Density (kg/m a) I 8900.0 

Specific heat(J /Kg.  ~ I 444:0 [ 775.0 

Thermal conductivity (W/m. ~ 90.7 

Young's modulus (Gpa) 199.5 

Poisson's ratio 0.3 

Thermal expansion (~ • 106) 13.3 

A1203 

3970.0 

30.1 

393.0 

0.25 

8.8 

Fig. 4 

AI~03 
2,, '!i F G M  !!![ . . . . .  !'!'i'x ! i i i ' I2d 

= ; N : i :  . . . . . . . .  i . . . . . . . . . .  : 
Iql . . . .  Itl 

2L 

A symmetric FGM model for finite element 
analysis. 
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Temperature, f~t) 

1 cycle 

"r, 1 

.......... > T I m s , t  

Fig, 5 Heating cycle. 

As for thermal conditions, constant room tem- 

perature 7b is applied to the bottom surface of a 

FGM, and thermal cycling shown in Fig. 5 is 

applied to the top surface, where T0 is 290 K and 

T~ is 1290 K. A heating cycle consists of  tbur 

steps ; a heating during 40 s, a upkeeping(5 s), a 

cooling(40 s) and a upkeeping(5 s). 

4. Formulation for Numerical 
Approximation 

For our numerical approximations, let us con- 

sider a two dimensional semi-infinite(in the x-  

axis) F G M  (i. e., -(2 = (--  co, co) • ( -  c, c) with 

a smooth boundary &Q). Then, the governing 

equations are composed of  a heat diffusion equa- 

tion and initial and boundary conditions(i ,  e., 
in i t ia l -boundary-value  problem): 

c~q 3 T  ] V" ( k V T ) + ~ - = o c ~ [ - ,  zn(O, t*] • 

I T= To, at t = O  

T =  7;, on y =  - c 

T = f ( t ) ,  on y=c  
(11) 

where, V is a two-dimensional  gradient operator 

and f ( t )  is a cyclic function, as shown in Fig. 5, 

and l* denetes a considering time interval. 

To formulate numerical approximations for the 

above partial differential equation, we need to 

discretize it in time domain and to take a var- 

iational formulation in space coordinates. 

First, for a time-discretization, let us make a 

uniform time partit ion such that t*=NAt and 

t"+~=t~+zlt(n=O, I,. . . . . .  , N - l ) .  For  our 
study, we use the well-known second order 

Crank-NicoIson  method (Zienkiewicz and 

and a T  Taylor, 1991), for which T ~ i -  at t ime-step 

t "+~/2 are approximated with T n and T "+1, 

T"+m~-I ( T'~+~ + T") (I2) 

n+I I2  

Assuming no q and p lugging  Eqs. (12) and 

(13) into Eq. (11), we have the semi- discrete 

expression at t ime-step t n+l given by 

oc( 27. 
Next, for Galerkin variational formulation for 

T at t ime-step f"+~, let as define the test space V 

(-(2) of admissible temperature functions Q (x, y) 

and the trial function space l~n (-(22) such as 

V(22)={Q:  Q~HI(32)IQ=O on y = - + c }  / 

V. (22) = V(32) +{f*}n I 
(15) 

Here, H ' (22)  is a Hilbert space(Adams,  1978) 

and {f*}, are H ~ (22) functions which have To at 

y = - c  and f(t") at y=c.  Then, using diver- 
gence theorem with an arbitrary test function (QE 

V(22), we obtain the fbllowing. 

/ ( / Tn+X+ VQ)d.(2=jaa Q[kV~ ................. I__.. T")  , n}ds (16) 

From our previous assumptions and boundary 

conditions, the RHS vanishes and finally the 

variational formulation arrives at the Crank 

-Nico lson-Galerk in  scheme: 

Given T ~ find T " + I ~  1~',<(22) such that 

(n = 0 ,  1, -.., N -  I ) 

At ~ pc T"+I QdQ- s oc T'Qd.Q= - ~ - ~  

{kV(T"+tq  - T") �9 VQ}d~2, 'v'(Q~ V(32) (17) 

It is widely known that this scheme is un- 

contionally convergent for any choice of time 

parti t ioning At  and the finite element mesh size 

(but with oscillation problem).  

For finite element approximations, we express 

trial function T~ "< and test function Q~ using 

bilinear finite element basis functions {r 
M span {r V h (32) (finite erement approxima- 
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tion space) by 

M 
T# +~ = ~  TA",;~r (x, y) } 

M (18) 
O~= __N~,r y) 

Substituting the expansions in Eq. (18) into Eq. 

(17) and employing a matrix form, we obtain the 
full-discrete approximation, 

Given T ~ find Thn+l~ 17"h(~) such that 

(n=0,  1, ..., N- -  1) 

{7;7} V Q , ~  Vh(s (19) 

where, 

Ces=f~pcr t (20) 

8x 3x o3; ay I J 

After we construct two matrices [C] and I-K], we 
obtain approximate temperature distribution T 

(x, y; t) successively through a system of simulta- 
neous Eq. (I9). 

Once computing temperature distribution, ther- 

mal stress distributions at any time are calculated. 
According to the elementary engineering relations 
based on the assumptions of infinitesimal strains 
and plane stress condition, a non-vanishing strain 

(i. e., e• is 

exx(y) = e ( y )  =eo+ xoy (21) 

where, ~0 and x0 represent, respectively, the strain 
and the curvature of  the mid-surface(i, e. y = 0 ) .  
Therefore, a non-vanishing thermal stress(i, e., 

a~) at time-step t ~ is expressed by 

O'.nx (y) = a n ( y )  = E ( y )  I s (y )  -ce(y)d ' - l 'n (y)]  

= E ( y )  [ e o + x o y - c e ( y ) d T " ( y ) ] }  (22) 

with A T " ( y )  being denoted by ( T n ( y ) - T . )  at 
arbitrary time-step t n. 

Since the resultant force and moment produced 

by thermal stress should be statically equilibrated 
with applied external force F ap and applied exter- 

nal moment M ap , s0 and x. in Eq. (22) can be 
determined by the following relations: 

- I2 (Jo + F ~t') +11 (J~ + M a') 
eo = I t - -  id2 (23) 

Here, 

xo-- I~(J')+ FaP) - I~ + MaP) (24) 
I~-IoI~ 

./ f c 
}= ] cyiE (y) dy (25) 

],=fly'E (y) (y) dy (26) 

Inserting s0 and x0 into Eq. (22) with no applica- 
tion of external force and moment, we finally 

obtain the equation for thermal stress distribution 
through the thickness at time-step t n 

fin ( y ) _~_ E ( y ) [. --  Ia]o + I~J t# _1o12 + ( I Jo  - IoJ ~ ) y 

- c~(y) AT'~(y)  ] (27) 

5. Numerical Experiments 

We carried out numerical experiments to inves- 
tigate thermal stress characteristics of  the FGM 
composed of  Ni and A12Oa with the finite element 

technique developed according to the previous 
analytic results and approximation formulations. 

To observe the effects of  the two considering 
parameters, RT and N, we tested the cases of  N =  

0.3, 0.7, 1, 5, 10, and 100 for each RT of  0.2, 0.5, 
0.7 and I. For a clear comparison between classi- 

cal and FGM layered composites, we include the 

bimaterial case in each figure. 
In Figs. 6-9, temperature distributions, when 

the top surface is heated to 1290 K, are presented. 
For the bimaterial (RT =0) ,  a remarkable temper- 

ature gradient exists at the interface of two mate- 
rial layers. Also, big temperature gradients pre- 
vail as N increases or approaches 0, particularly 

for the smaller RT. But, temperature distributions 
for every N become smoother as RT increases. 

This tendency is due solely to an extension of the 
middle FGM layer. 

Next four figures, Figs. 10--13 show thermal 

stress distributions through the thickness when 
the top surface is heated to T1. Here, we pay 

particular attention to the variation in thermal 

stresses al the interfaces fbr difYerent relative 
thicknesses and the material compositions. 

From Fig. 10 of RT=0.2,  stress concentration 
for N.-.-0.3 at the interface between FGM and 



RT=0.2 

Finite Element Analysis of Thermal Stresses in Functionally... 11~ 

1400 

1200 ~ NO.7 .#~,~ 

N' I  l i l l f l  + 

1000 - - " - -  ~ ~ + 

8O0 

- 500 

t~O 

200 

0 
..5 -4 -~ "-2 -1 o 1 2 3 4 5 

Y ( m m )  

Fig. 6 Temperature distrubution(RT=0.2). 
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Fig. 8 Temperature distrubution(RT=0.7). 

ceramic layers becomes to be relaxed by increas- 
ing N, however when N exceeds a certain value, 

the other interface has stress concentration, too, 
The reason of the stress concentration occurred 
for lower or higher values of N is because the 
middle FGM layer approaches, respectively, 

600 

400 

200 

0 

"200 

"~.00 

-600 

RT �9 0.2 

.... / <':, 

Y(mm) 

Fig. 10 Thermal stress distrubution(RT=0.2). 
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Thermal stress distrubution (RT =0.5). 

metal or ceramic layer, i,e., a classical nonsym- 

metric bimaterial composite(referring to Fig. 3). 
From Fig. 11 to Fig. 13, it is observed that 

maximum thermal stresses decrease as RT 

increases for N >0.3.  For the case of N = 0 . 3 ,  a 
steep increase in thermal stress distribution at the 
right interface can not be weaken even as RT 
increases. This can also be explained by the fact 
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Fig. 14 Estimated global sharpness, S~. Fig. 12 Thermal stress distrubution(RT=0.7). 
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Fig. 1:3 Thermal stress distrubution (Full FGM). 
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explained just above. In particular, for the full 

F G M ( N  >0.3),  smoother thermal stress distribu- 

tions having smaller values are obtained. 

In next figures, Fig. 14 and Fig. 15, we plotted 

the estimated global and local sharpnesses, Sc 

and Sz, respectively. These two quantities mea- 

sure the sharpness of  variations in thermal stresses 

in the middle FGM layer. The first quantity Sc is 

defined as 

SG = 1 (Tma~/~z~ I (28)  

and the second quantity SL is defined as the 

inverse of two times of the shorter distance 

between the locations yo, ya/4z at which thermal 

stress reaches the steepest value a0 and it drops by 

,JN, respectively (Here, A/u means the relative 

difference ao and O'o/f2 for each N when RT----0. 
2). 

1 
Sz = , ,  , (29) 

zlYo-- 3 i/,~- 

From Fig. 14, the estimated global sharpnesses 

strictly decrease as RT approaches unity except 

for N=0 .3  and 100. While, from Fig. 15, the 

estimated local sharpnesses decrease as RT 

approaches unity except for N=0.3 .  

From the numerical results obtained in this 

study, we can observe that, with appropriate 

choice of  these two parameters, we can eliminate 

steep increase in thermal stress at the interfaces 

and can produce smaller and smoother thermal 

stress distributions. However, it is worth to note 

that, with reasonably low N or small RT with 

reasonably low or high values of  N, we can not 

improve thermal characteristics, because these 

two limiting cases correspond to classical 

bimaterial composites, as shown in Fig. 3 (a). 

6.  C o n c l u s i o n  

In this paper, we addressed a technique for 

finite element analysis and parametric investiga- 
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tion of thermal characteristics of  FGMs, and 

presented numerical results illustrating the effects 

of two parameters. 
From numerical results, we confirm that con- 

siderable improvement is possible by inserting 
FGM layer between metal and ceramic layers in 
classical bimaterial layered composites. Also, 
according to variations of two major parameters, 
different thermal stress characteristics were obser- 

ved tbr different choices of parameters. In our 
model problem, temperature and stress distribu- 
tion become smoother when RT approaches unity 

and for a selective range of  N. 

Therefore, the optimal FGM that can satisfy 
the desired thermomechanical functions with 
minimum stress concentration at the layer inter- 
faces would be expected by controlling two gov- 
erning parameters, and which deserves the future 
work. 
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